
Power Supply 10V/1A with BJT in EmitterSwitchingTechnique.

Characteristics:

Designation: Power Supply with BJT

Application: Power Supply for general

applications

Power: 100-240v, 10V/1A

Prize: low cost

Special: Power Supply in EmitterSwitching-

Technique. Very robust and reliable.

Fig. left: Power Supply open, Transistor

TO220 nearby

Fig. far left: Signals, U_{CE} blue, U_{B} yellow.

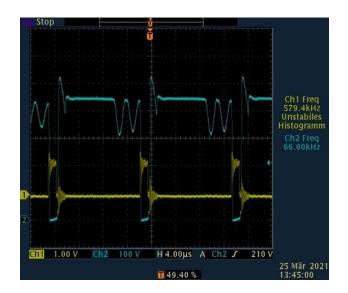
Description:

In the case of the examined power supply with a bipolar switching transistor and a control IC, where the transistor is operated in normal mode, the SOA diagram applies. The dielectric strength V_{CE} in this mode is 400V for the TS13003 transistor used, see Fig. 1a. For the EmitterSwitchingTechnique, the reverse bias SOA (SOAR) diagram applies for V_{BE} -5V, see Fig. 1b.

2.4 2.0 1.6 1.2 0.8 Vce=700V L=500uH hfe≥4 Duty Cycle=2% 0 100 200 300 400 500 600 700 800 Vce[V], Collector-Emitter Voltage

Figure 5. Reverse Bias SOA

Fig. 1a: SOA of the TS13003


Fig. 1b: SOAR of the TS13003

It can be seen that the dielectric strength V_{CE} of the transistor is almost twice as high (700V SOAR instead of 400V SOA) as with standard control. Furthermore, all switching times are significantly shorter with EmitterSwitchingTechnology, especially the storage time t_s , which is particularly important for switching applications. This falls far below 1us and is also independent of the control. Otherwise t_s is up to 5us and depends strongly on the type of control. The control of the transistor in the original with a control IC allows the operation only in the SOA range, i.e. the collector-emitter voltage must not exceed 400V!

The present designs are based on commercially available power supplies with only the BJT switching transistor in EmitterSwitchingTechnique. This requires a few additional, very inexpensive components, which for this prototype are built on a small add-on board and could be integrated into the existing design. Figure 3 shows the basic circuit. In this case, the emitter-collector voltage, U_{CE}, may be 700V and poses no danger to the transistor. Instead of the original transistor in the TO220 package, a smaller, cheaper transistor in the TO92 package could be used.

Figure 2 shows the U_{CE} signals in blue and the I_{SEC} secondary current in yellow. The signals in EmitterSwitchingTechnique are the same as in the original. As can be seen, the maximum collector-emitter voltage U_{CE} is well above 500V, and thus well above the permissible 400V for SOA operation. This is not a problem for the emitter switching technology, since the voltage in this configuration may be 700V.

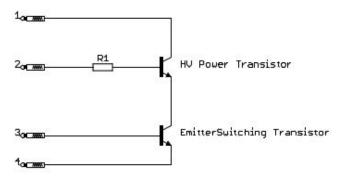


Fig. 3: EmitterSwitchingTechnique, Basic

